Search results for "Coupled fixed point"
showing 10 items of 12 documents
Coupled fixed point theorems for multi-valued nonlinear contraction mappings in partially ordered metric spaces
2011
Abstract In this paper, we establish two coupled fixed point theorems for multi-valued nonlinear contraction mappings in partially ordered metric spaces. The theorems presented extend some results due to Ciric (2009) [3] . An example is given to illustrate the usability of our results.
Coupled coincidence points for compatible mappings satisfying mixed monotone property
2012
We establish coupled coincidence and coupled fixed point results for a pair of mappings satisfying a compatibility hypothesis in partially ordered metric spaces. An example is given to illustrate our obtained results.
Fixed point theorems on ordered metric spaces and applications to nonlinear elastic beam equations
2012
In this paper, we establish certain fixed point theorems in metric spaces with a partial ordering. Presented theorems extend and generalize several existing results in the literature. As application, we use the fixed point theorems obtained in this paper to study existence and uniqueness of solutions for fourth-order two-point boundary value problems for elastic beam equations.
Coupled fixed point, F-invariant set and fixed point of N-order
2010
In this paper, we establish some new coupled fixed point theorems in complete metric spaces, using a new concept of $F$-invariant set. We introduce the notion of fixed point of $N$-order as natural extension of that of coupled fixed point. As applications, we discuss and adapt the presented results to the setting of partially ordered cone metric spaces. The presented results extend and complement some known existence results from the literature.
Coupled fixed point results in cone metric spaces for -compatible mappings
2011
In this paper, we introduce the concepts of -compatible mappings, b-coupled coincidence point and b-common coupled fixed point for mappings F, G : X × X → X, where (X, d) is a cone metric space. We establish b-coupled coincidence and b-common coupled fixed point theorems in such spaces. The presented theorems generalize and extend several well-known comparable results in the literature, in particular the recent results of Abbas et al. [Appl. Math. Comput. 217, 195-202 (2010)]. Some examples are given to illustrate our obtained results. An application to the study of existence of solutions for a system of non-linear integral equations is also considered. 2010 Mathematics Subject Classificati…
Coupled coincidence point results for (φ,ψ)-contractive mappings in partially ordered metric spaces
2014
Abstract. In this paper, we extend the coupled coincidence point theorems for a mixed g-monotone operator F : X × X → X $F:X\times X\rightarrow X$ obtained by Alotaibi and Alsulami [Fixed Point Theory Appl. (2011), article ID 44], by weakening the involved contractive condition. Two examples are given to illustrate the effectiveness of our generalizations. Our result also generalizes some recent results announced in the literature. Moreover, some applications to integral equations are presented.
Coupled fixed point theorems for symmetric (phi,psi)-weakly contractive mappings in ordered partial metric spaces
2013
We establish some coupled fixed point theorems for symmetric (phi,chi)-weakly contractive mappings in ordered partial metric spaces. Some recent results of Berinde (Nonlinear Anal. 74 (2011), 7347-7355; Nonlinear Anal. 75 (2012), 3218-3228) and many others are extended and generalized to the class of ordered partial metric spaces.
Fixed point theorems for $\alpha$-$\psi$-contractive type mappings
2012
In this paper, we introduce a new concept of $\alpha$-$\psi$-contractive type mappings and establish fixed point theorems for such mappings in complete metric spaces. Starting from the Banach contraction principle, the presented theorems extend, generalize and improve many existing results in the literature. Moreover, some examples and applications to ordinary differential equations are given here to illustrate the usability of the obtained results.
Coupled fixed-point results for T-contractions on cone metric spaces with applications
2015
The notion of coupled fixed point was introduced in 2006 by Bhaskar and Lakshmikantham. On the other hand, Filipovićet al. [M. Filipovićet al., “Remarks on “Cone metric spaces and fixed-point theorems of T-Kannan and T-Chatterjea contractive mappings”,” Math. Comput. Modelling 54, 1467–1472 (2011)] proved several fixed and periodic point theorems for solid cones on cone metric spaces. In this paper we prove some coupled fixed-point theorems for certain T-contractions and study the existence of solutions of a system of nonlinear integral equations using the results of our work. The results of this paper extend and generalize well-known comparable results in the literature.
Some Common Coupled Fixed Point Results for Generalized Contraction in Complex-Valued Metric Spaces
2013
We introduce and study the notion of common coupled fixed points for a pair of mappings in complex valued metric space and demonstrate the existence and uniqueness of the common coupled fixed points in a complete complex-valued metric space in view of diverse contractive conditions. In addition, our investigations are well supported by nontrivial examples.